Printed Pages - 7

322411 (14)

BE (4 ${ }^{\text {th }}$ Semester)
Examination, Nov.- Dec., 2021
Branch : CSE, IT

COMPUTATIONAL MATHEMATICS

Time Allowed : Three Hours
Maximum Marks : 80
Minimum Pass Marks : 28

Note : In each question part (a) is compulsory carry 2
marks and solve any other two parts from (b), (c)
\& (d) carrying 7-7 marks.
Q. 1. (a) Bisection method is also known as
(b) Find a positive root of $\mathrm{xe}^{\mathrm{x}}=2$ by the method of Regula Falsi method. 7
(c) Using Newton-Raphson method, find the real root of $x \log _{10} x=1.2$ correct to four decimal places.
(d) Use synthetic division and perform two iterations of the Birge-Vieta method to find the smallest positive root of the equation: 7 $x^{4}-3 x^{3}+3 x^{2}-3 x+2=0, P_{0}=0.5$
Q. 2. (a) The preceding method of solving simultaneous linear equations are known as method.
(b) Solve by Crout's method of the following : 7

$$
\begin{aligned}
& x+y+z=3,2 x-y+3 z=16,3 x+y-z \\
& =-3
\end{aligned}
$$

(c) Solve by Gauss-Seidal iteration method of

$$
\begin{aligned}
& \text { the following equations: } \\
& 20 x+y-2 z=17,3 x+20 y-z=-18 \\
& 2 x-3 y+20 z=25
\end{aligned}
$$

(d) Solve the equations :

$$
\begin{aligned}
& 10 x-2 y-3 z=205,-2 x+10 y-2 z=154 \\
& -2 x-y+10 z=120 \text { by Relaxation method. }
\end{aligned}
$$

Q. 3. (a) Evaluate $\Delta^{4}[(1-x)(1-2 x)(1-3 x)(1-4 x)]$ if the interval of differencing is 1 . 2
(b) The table gives the distance in nautical miles
of visible horizon for the given heights in feet
above the earth's surface :
$\begin{array}{llllllll}x \text { (height) : } & 100 & 150 & 200 & 250 & 300 & 350 & 400\end{array}$ y (distance) : $\begin{array}{llllllll} & 10.63 & 13.03 & 15.04 & 16.81 & 18.42 & 19.90 & 21.27\end{array}$

Find the value of y when (i) $x=218 \mathrm{ft}$. (ii) $\mathrm{x}=410 \mathrm{ft}$.
(c) Apply Bessel's formula to obtain y_{25}, given

$$
\begin{aligned}
& y_{20}=2854, y_{24}=3162, y_{28}=3544 \text { and } \\
& y_{32}=3992
\end{aligned}
$$

(5)
(d) Given the values:

x	$:$	5	7	11	13
	17				
$f(x)$	$:$	150	392	1452	2366
	5202				

Evaluate $f(9)$, using (i) Lagrange's formula
(ii) Newton's divided difference formula.
Q. 4. (a) Define Numerical Integration.
(b) Given that: 7
$\begin{array}{llllllll}x & : & 1.0 & 1.1 & 1.2 & 1.3 & 1.4 & 1.5\end{array} \quad 1.6$.
y : $7.9898 .4038 .7819 .129 \quad 9.4519 .750 \quad 10.031$
Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at (i) $x=1.1$, (ii) $x=1.6$.
(c) Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by using: 7
(i) Trapezoidal rule
(ii) Simpson's $1 / 3$ rule
(iii) Simpson's $3 / 8$ rule

(6)

(d) The following table gives the velocity v of a

partical at time $t:$								
$t($ second $)$	$:$	0	2	4	6	8	10	12
$v(\mathrm{~m} / \mathrm{sec})$	$:$	4	6	16	34	60	94	136

Find the distance moved by the particle in 12
seconds.
Q. 5. (a) Write Taylor series, for solution of equation

$$
\frac{d y}{d x}=f(x, y) \text {, at } y\left(x_{0}\right)=y_{0} \text {. }
$$

(b) Find the value of y for $x=0.1$ by Picard's

$$
\begin{aligned}
& \text { method, given that : } \\
& \frac{d y}{d x}=\frac{y-x}{y+x} ; y(0)=1
\end{aligned}
$$

(c) Apply Runge-Kutta method to find
approximate value of y for $x=0.2$, in step of
0.1, if $\frac{d y}{d x}=x+y^{2}$, given that $y=1$, where
$x=0$.
7
(d) Given $\frac{d y}{d x}=x^{2}(1+y)$ and $y(1)=1$, $y(1.1)=1.233, y(1.2)=1.548, y(1.3)=1.979$,
evaluate $\mathrm{y}(1.4)$ by Adams-Bashforth
method.7

